Newton's Toy Box

TABLE OF CONTENTS

ABOUT DELTA SCIENCE MODULES

Program Introductioniii
Teacher's Guideiv
Delta Science Readersvi
Equipment and Materials Kitvii
Scope and Sequenceviii
Assessment Featuresix
Process Skillsx
Communicating About Sciencexi
Integrating the Curriculumxii
Meeting the Standardsxiii
What We Believexiv

NEWTON'S TOY BOX OVERVIEW

About Newton's Toy Box		
Overview Charts		
Hands-on Activities2		
Delta Science Reader4		
Science Background5		
Materials List		

HANDS-ON ACTIVITIES

Activit	y Summary
Sched	ule
Prepa	ring for the Activities
Cla	assroom Management
Ad	vance Preparation
Ma	aterials Management
Activit	ies
1.	Motion in Review 13
2.	Gravity and Balance 19
3.	Moving Masses 25
4.	The Parachute Drop33
5۰	Basketball Arcs

6.	Ball and Cup Contest 45		
7.	Rolling On 49		
8.	Great Race 55		
9.	Accelerating Masses61		
10.	The Come-Back Can67		
11.	Action-Reaction in Action73		
12.	The Grasshopper Game79		
13.	Clacker Conservation85		
Assessment			
Ac	tivities 1–1391		
Gloss	ary		

TEACHER RESOURCES

Unit Test: Teacher Information99
References and Resources 101
Science Safety 103
Standards Correlations 105
Measurement Resources 107
Building Science Vocabulary 111

DELTA SCIENCE READER TEACHER'S GUIDE

Introduction	i
Science and LiteracyTi	i
Assessment FeaturesTii	i
Including All Learners	/
About the Teaching PlanT	/
Teaching Newton's Toy Box	i

COPYMASTERS

Student Activity Sheets Assessment Activity Sheets Assessment Summary Chart Unit Test

About **Newton's Toy Box**

DeltaScienceModules, THIRD EDITION

Students experiment freely with familiar toys and objects. As they explain their observations, they prove Newton's three laws of motion. The path of a tossed ball, the flip of a grasshopper toy, and the endless swing of clackers reinforce the concepts of inertia, gravity, acceleration, mass, force, and momentum. Students engage in races, games, and challenges that emphasize the laws of motion, which govern everyday tasks and cosmic interactions. The kit includes a video so students can compare the behavior of the toys on Earth with their behavior in a microgravity environment. By dealing with scaled-down applications, middle school students grasp these laws and master the vocabulary of physics.

In the Delta Science Reader Newton's Toy Box, students delve into the basic physics of motion. They find out how motion is described in terms of distance, direction, motion, speed, velocity, and acceleration. They discover the effects of friction and gravity on objects and read about conservation of momentum. Newton's laws of motion are explained and illustrated so that students can comprehend how and why objects move, or don't. Students also investigate the relationship among force, energy, power, and work and then explore the devices that make work easier. They learn how the six simple machines provide a mechanical advantage, such as multiplying input force, and how the efficiency of simple and compound machines is calculated. In a biographical sketch, they are introduced to Sir Isaac Newton. They also read about satellite motion how satellites are placed in orbit and how they stay there.

Overview Chart for Hands-on Activities

	Hands-on Activity	Student Objectives
0	Motion in Review	 observe that an object at rest remains at rest until a force acts on it describe the motion of an object when it experiences a force
2	Gravity and Balance page 19	 identify gravity as the force that makes an object fall measure the strength of the gravity force on an object compare gravity and gravity support forces
3	Moving Masses	 describe the relationship between mass and weight observe the relationship between force and acceleration observe the relationship between force and mass predict the falling rate of balls of different masses
4	The Parachute Drop page 33	 observe the effects of air resistance on falling objects use air resistance to slow the speed of a falling object compare the parachute requirements for objects of different masses
5	Basketball Arcs page 39	 observe the trajectory of a thrown ball apply what they observe to the game of basketball predict how the ball would behave in a microgravity environment
6	Ball and Cup Contest page 45	 observe the path of a circling ball describe how gravity is used to catch the ball predict how the toy can be operated in a microgravity environment
7	Rolling On page 49	 measure the distance traveled and the elapsed time for a moving object calculate the speed of a moving object observe how the speed of a moving object changes on different surfaces
8	Great Race	 calculate the average speed of a car rolling down a ramp compare the speed of a car to its starting height on the ramp relate gravitational potential energy to kinetic energy
9	Accelerating Masses	 observe the acceleration of a car rolling down a ramp calculate the average speed of the car at two different points on the ramp determine whether the car is accelerating
10	The Come-Back Can	 construct a come-back can predict what will happen to the can when it is rolled forward demonstrate how energy is conserved in a come-back can
11	Action-Reaction in Action page 73	 identify the action and reaction forces when a ball bounces predict the behavior of a spring jumper on the basis of action-reaction forces
12	The GrasshopperGamepage 79	 describe the action and reaction forces involved in a flipping paper grasshopper compare the jumping ability of paper grasshoppers of different masses
13	Clacker Conservation page 85	 observe and identify action and reaction forces that cause the clacker to behave as it does identify momentum conservation behaviors in clackers that demonstrate that momentum is conserved predict which clacker behaviors will be possible in microgravity
	Assessment page 91	• See page 91.

Newton's Toy Box

Process Skills	Vocabulary	Delta Science Reader
observe, investigate, communicate	force, inertia, Newton's first law of motion, velocity	pages 2–3, 4, 10–11, 22
observe, measure, compare, record data, use numbers	gravity, gravity support force, newton (N), pound (lb), weight	pages 4–5, 8
communicate, measure, record data, conclude, observe, predict	acceleration, mass, Newton's second law of motion	pages 4–5, 8, 12, 22
observe, hypothesize, experiment, use variables, predict, compare	air resistance	pages 6–8
observe, experiment, predict	free fall, parabola	page 23
collect data, experiment, conclude, predict	microgravity	page 23
measure, collect and record data, use numbers, interpret data, conclude, define based on observations	distance, friction, speed, time	pages 3, 6–7
measure, collect and record data, use variables, use numbers, interpret data, communicate, compare	energy, gravitational potential energy, kinetic energy, potential energy	pages 3, 14
measure, observe, collect and record data, use numbers, interpret data, conclude		pages 4–5
investigate, observe, communicate, infer, predict	conservation of energy, elastic potential energy	page 14
observe, experiment, use variables, collect and record data, predict, define based on observations	action force, Newton's third law of motion, reaction force	pages 13, 22
observe, predict, communicate, compare		page 13
observe, analyze data, predict	conservation of momentum, momentum	page 9
	See the following page fo	r the Delta Chart

Overview Chart for Delta Science Reader Newton's Toy Box

Selections	Vocabulary	Related Activity
Think About		
Motion and Speed pages 2-3 • Changing Position • Speed and Velocity	average speed, displacement, distance, motion, position, reference point, speed, velocity	Activity 1
Forces and Motion pages 4-9 • What Are Forces? • How Do Forces Affect Objects? • What Is Friction? • What Is Gravity? • What Is Momentum?	acceleration, air resistance, balanced forces, force, friction, gravity, law of conservation of momentum, mass, momentum, net force, newton, terminal velocity, unbalanced forces, weight	Activities 2, 3, 7, 8, 9, 13
Newton's Laws of Motion pages 10-13 • Newton's First Law • Newton's Second Law • Newton's Third Law	inertia, Newton's first law of motion, Newton's second law of motion, Newton's third law of motion	Activities 1, 3, 11, 12
Work, Energy, and Power page 14	energy, joule, kinetic energy, potential energy, power, work	Activities 8, 10
Machines and Work pages 15-21 • Mechanical Advantage • Efficiency • Simple Machines • Compound Machines	compound machine, efficiency, fulcrum, gear, inclined plane, input force, lever, machine, mechanical advantage, output force, pulley, screw, simple machine, wedge, wheel and axle, work input, work output	
People in Science		
• Sir Isaac Newton page 22	law of universal gravitation	Activities 1, 2, 3, 11
Did You Know?		
• About Satellite Motion page 23	free fall, satellite	Activities 4, 5, 6, 10, 13
	Teaching suggestions for the De Reader are in a 32-page booklet with this guide.	lta Science included

Newton's Toy Box

In this Delta Science Module, students are introduced to many fundamental concepts in physics as they experiment freely with familiar toys and objects and then are asked to define what they observe in terms of Newton's three laws of motion.

ACTIVITIES 1, 2, and 3 Students review gravity, motion, and the relationship between mass and force. They observe simple behaviors and then define them using the terms *motion*, *force*, *mass*, *velocity*, *inertia*, *gravity*, and *acceleration*.

ACTIVITY 4 Students continue to explore the laws of motion. They investigate the variables that affect air resistance when they construct a parachute and use it to slow the speed of falling objects.

ACTIVITY 5 Students examine the parabolic path of a tossed ball. While playing the familiar game of basketball, students recognize just how they manipulate the angle of the arc in order to correctly position where the ball will fall.

ACTIVITY 6 Students experiment with the traditional "ball and cup" and then explain how gravity and Newton's second law affect the toy.

ACTIVITY 7 Students reexamine Newton's first law when they observe, and then define, the force that opposes the forward motion of a moving object—friction. Students calculate the speed of a toy car in three different situations and then identify the degree of friction as the variable that accounts for the differences in speed.

ACTIVITY 8 Students accelerate their toy cars by elevating the track to form a ramp. As the

cars descend the ramp, their gravitational potential energy (due to position) is converted to kinetic energy (in the form of motion). Students vary the elevation of the ramp and then measure the resultant speeds of the descending cars using stopwatches.

ACTIVITY 9 Students measure the actual acceleration of their cars as they descend the ramp.

ACTIVITY 10 Students explore Newton's third law of motion—action and reaction—with a come-back can, a simple device that stores and then releases energy. Students construct the cans, observe their behavior, and then describe it in terms of potential and kinetic energy.

ACTIVITIES 11 and 12 Students continue to examine action and reaction by way of spring jumpers and student-assembled paper models of grasshoppers.

ACTIVITY 13 Students demonstrate conservation of momentum, another way of looking at Newton's third law, using free-hanging objects. They experiment with another popular toy, the clacker, and describe its behavior in terms of momentum and transfer of energy.

In conjunction with the activities they perform, students watch a video in which astronauts experiment with some of the same toys that students are experimenting with. Students compare the behavior of the toys on Earth with the behavior of the toys in a microgravity environment and see that many of the techniques they use to operate their toys here on Earth depend on Earth's gravitational force.

9