NGSS Connections

www.nextgenscience.org

Crucial Concentration High School

Performance Expectations: Students' ability to complete the following performance expectation(s) will be supported by participation in this activity.

HS-LS1-1: Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins, which carry out the essential function of life through systems of specialized cells.

HS-PS1-2: Construct and revise an explanation for outcome of a simple chemical reaction based on the outermost election states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.

HS-PS1-7: Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.

Dimension	NGSS Code or citation	Corresponding student task in activity
Disciplinary	LS1.A: Structure and Function	In the macromolecules pre-lab activity, students will
Core Idea	 Systems of specialized cells within organisms help 	consider and explore the role of macromolecules
	them perform the essential functions of life.	(including proteins) in the cell and the body.
	PS1.B Structures and Properties of Matter	Students will use the results of a chemical reaction
	 The fact that atoms are conserved, together with 	(Lowry Assay) to determine the absorbance values of
	knowledge of the chemical properties of the elements	known quantities of protein. They will then use Beer's
	involved, can be used to describe and predict chemical	law to calculate the concentration of sports drinks for
	reactions.	which they have absorbance values.
Practice	Planning and Carrying out Investigations	Students will conduct an investigation to determine
	• Conduct an investigation and/or evaluate and/or revise	which of three sports drinks has the most protein.
	the experimental design to produce data to serve as the	
	basis for evidence that meet the goals of the	
	investigation.	
	Construct an explanation	Students will make a claim as to which sports drink
	 Construct an explanation using models or 	contains the most protein and use data from their
	representations.	investigation as evidence to support their claim. They

	 Construct a scientific explanation based on valid and reliable evidence obtained from sources (including students' own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. 	will provide scientific reasoning to connect their evidence to their claims.		
Crosscutting	Patterns	Students will observe the patterns of color change in		
Concept	 Use mathematical representations to identify certain patterns. 	their samples after performing the Lowry Assay.		
		Students will plot their data on a graph, and use Beer's		
		Law to determine concentration of unknown proteins.		
	Cause and Effect	Students will explore how specific chemical reactions		
	 Students suggest cause and effect relationships to 	cause color changes based on protein concentration.		
	explain and predict behaviors in complex natural and			
	designed systems.	Students will use empirical evidence based on cause and		
	 Students will use cause and effect relationships to 	effect of specific chemical reactions to make claims		
	predict phenomena in natural or designed systems.	about the amount of protein in sports drinks.		
	Energy and Matter	Students will use chemical reactions to quantify the		
	• Energy cannot be created or destroyed. It only moves	concentration of a colorless protein.		
	between one place and other, pace, between object			
	and/or field, or between systems.			
Nature of Scie	ence			
Scientific Kno	wledge is Based on Empirical Evidence			
 Science knowledge is based upon logical and conceptual connections between evidence and explanations. 				
Scientific Mod	dels, Laws, Mechanisms and Theories Explain Natural Phenomen	la		
Theor	ies and laws provide explanations in science, but theories do not	t with time become laws or facts.		
 Laws are statements or descriptions of the relationships among observable phenomena. 				
Scientific Knowledge Assumes an Order and Consistency in Natural Systems				
Science assumes the universe is a vast single system in which basic laws are consistent.				
Connections to <u>Common Core State Standards</u>				
English Langu	English Language Arts/Literacy Mathematics			

RST.9-10.3	HSF.IF.B.5
RST.9-10.4	PRACTICE.MP3
RST.9-10.7	PRACTICE. MP4
RST.11-12.3	PRACTICE.MP5
RST.11-12.4	PRACTICE.MP6
RST.11-12.7	
W.9-10.1	
W.9-10.2	

Advanced Placement Standards: Chemistry

Standard	Associated Activity in Activity
Enduring Understanding 1.D. Atoms are so small that they are	Students will use perform a Lowry Assay on protein samples of
difficult to study directly; atomic models are constructed to	known and unknown concentrations. They will use a
explain experimental data on collections of atoms.	colorimeter to measure the amount of light being absorbed in
Essential Knowledge 1.D.3.c: The amount of light	each sample and use Beer-Lambert Law to calculate the
absorbed by a solution can be used to determine the	concentration of protein in the unknown samples.
concentration of the absorbing molecules in that	
solution, via the Beer-Lambert Law.	
Science Practice 2: The student can use mathematics	Students will use Beer's law to determine the concentration of
appropriately.	the unknown sports drinks.
Science Practice 5: The student can perform data analysis and	Students will look for patterns and relationships in the data and
evaluation of evidence.	evaluate that data to answer the question of which sport drink
	has the highest concentration of protein.
Science Practice 6: The student can work with scientific	Students will construct a scientific argument to support their
explanations and theories.	claims about which sport drink has the highest concentration of
	protein. The argument will include evidence and scientific
	reasoning.