MATH 314 Introduction to Cryptography (3 units)

Course Outline

Chapter(s)	Topics	# of weeks
1	Overview of Cryptography and Cryptanalysis Kerchoff's Principle; Types of attacks, and cryptographic applications.	0.5
2	Classical Cryptography Caesar, Vigenere and Hill ciphers; Cryptanalysis of classical ciphers; the one-time-pad and per- fect secrecy.	2
3	Elementary Number Theory Modular arithmetic; Euclid's Algorithm; Chinese Remainder Theorem; Fermats Little Theorem and Eulers Theorem; Modular Exponentiation; 3-Pass-Protocol; Primitive Roots; Legendre and Jacobi Symbols; Finite Fields.	3.5
4-5	Modern Symmetric Key Cryptography Feistel Ciphers; SDES and DES; Differential Cryptanalysis; 2DES and Meet- in-the-middle attacks; 3DES; AES/SAES.	3.0
6-7	Public Key Cryptography RSA; The Fermat, Miller- Rabin and Solovay-Strassen primality tests; Factoring, Dixon's Factorization Algorithm; Discrete logarithms, Diffie-Hellman key exchange, ElGamal.	2.5
8-9	Hash Functions and Digital Signatures Hash Functions; Collisions and Collision resistance, Birthday attacks, RSA and other signature algorithms.	1.5
10–16	Further Topics (as time permits) Security Protocols; Digi- tal Cash; Zero Knowledge Techniques; Elliptic Curves Cryp- tography; Error Correcting Codes; Quantum Cryptography.	
	Tests	1.0

Textbook: Introduction to Cryptography, 2nd edition, by Wade Trappe and Lawrence Washington.

Adopted: Spring 2018.